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Abstract. There is currently great interest in the dynamics of electrons and phonons in low-
dimensional systems, where the effects of quantum confinement cause a dramatic difference in
their behaviour as compared with bulk systems. In this paper we consider a localized electronic
impurity state (an electronic two-level system) linearly coupled to the vibrational modes of an
isolated nanometre-scale insulating crystal, and study the phonon emission rate at frequencies less
than that of the lowest internal vibrational mode, i.e., in the acoustic ‘gap’. We show that, at finite
temperature, electronic energy relaxation below the acoustic gap can occur as a result of anharmonic
broadening of vibrational modes, and we calculate the frequency and temperature dependence of
the relaxation provided by this mechanism.

1. Introduction

It is well known that the vibrational density of states (DOS) forms a continuous band in bulk
solids, and at low energies is well described by the Debye law [1]. However, in small crystals
the finite size leads to a discretization of the phonon spectrum. This is strongly manifested at
low frequencies where the separation between modes may become larger than their width, and
no modes exist below the lowest vibrational frequency. We shall refer to the frequency ωmin of
the lowest vibrational mode as the acoustic ‘gap’, even though it is not a gap in the strict sense.
The discrete DOS is expected to change dramatically any physical processes involving low-
frequency phonons, such as one-phonon energy relaxation and dephasing of closely spaced
electronic states, two-phonon Raman scattering, and anharmonic interactions.

Although electron–phonon processes have been extensively studied for bulk systems [2,3],
much less is known about nanocrystalline materials. Most of the work on the optical
properties of non-metallic nanocrystals has been on semiconductor nanocrystals [4, 5] and
semiconductor quantum dots [6–8], which are especially interesting for device applications.
The principal concern for device applications (quantum dot lasers, for example) is the influence
of phonon confinement on electron and hole intraband relaxation [9], which, in a bulk semi-
conductor, is usually dominated by LO phonon emission. In contrast, our focus is on low-
energy (a few cm−1) acoustic phonon emission by localized impurity states in large-band-
gap doped semiconductors and insulators, where striking phonon-confinement effects have
been observed [10–12]. Measurements of this type are a direct and sensitive probe of the
nanocrystal’s vibrational DOS inside the acoustic gap.

† Currently at: Department of Electrical Engineering, Washington University, Campus Box 1127, St Louis, MO
63130-4899, USA.
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Recently, Yang and co-workers measured the decay rates of Eu3+ impurity states separated
by 3 cm−1 and 7 cm−1 in Y2O3 nanoparticles with sizes varying from 7 to 23 nm [11, 12].
Nanoparticles in this size range are unable to support phonons with the energy of 3 cm−1.
(The acoustic gap in a nanoparticle of size d can be estimated as ωmin ≈ c/d, where c is a
characteristic sound speed. For Y2O3, c ≈ 7 × 105 cm s−1, which gives 5 cm−1 < ωmin <

16 cm−1 for 23 nm > d > 7 nm.) The lack of phonons which are resonant with the electronic
transition prohibits direct one-phonon processes, and the absence of lower-frequency phonons
prevents multi-phonon emission. Indeed, the rate of transitions between the components of the
3 cm−1 pair was found to be approximately 300 times smaller than the corresponding rate for a
bulk sample (in which the direct one-phonon process is allowed) but not zero, with essentially
no temperature dependence in the range of 1.5–10 K. Since this relaxation is still much faster
than the radiative decay rate, its origin needs to be understood.

One of the possible mechanisms for such transitions is the two-phonon Raman process
in which a thermal phonon is absorbed by the excited-state electron and a phonon of higher
frequency is emitted. The rate of transitions due to two-phonon Raman scattering in a Debye
system scales with temperature as T 7 [2]. However, the two-phonon Raman rate for transitions
between the same levels in a bulk system (at the same temperature) is much smaller than was
observed, and is expected to be further suppressed in a nanocrystal.

Another important class of mechanisms comprises those due to the interaction of a
nanoparticle with its surroundings. From the experiments of references [11] and [12], nano-
particles are known to form self-supporting clusters. Such clusters can have collective
vibrational modes with frequencies low enough to allow direct one-phonon relaxation. Another
possible mechanism of electronic relaxation is interaction with molecules adsorbed on a
nanoparticle’s surface when the impurity electron wave function has significant tails extending
to the nanoparticle boundary (this can happen if the impurity is located close to the surface),
or if the interaction with the molecule is long ranged (for example, electric dipole interaction).
Finally, the vibrational modes of a nanoparticle may be broadened by direct mechanical
interaction with a cluster, substrate, or support matrix if that interaction is strong enough,
and electronic relaxation can occur via the tails of these broadened modes.

In this paper we study the one-phonon electronic relaxation for transition energies below
the acoustic gap that becomes possible because of an uncertainty in the phonon energy
originating from intrinsic phonon relaxation. Intrinsic relaxation of phonons, in turn, can
have many origins. One of them, which is always present, is phonon–phonon interaction due
to anharmonicity of the crystal. The lowest-order (cubic) anharmonicity leads to second-order
non-linear processes such as second-harmonic generation or combination scattering. In the
case of the second-harmonic generation, a phonon of a given frequency ω can decay into two
phonons of frequencies ω1 and ω2 with ω1 + ω2 = ω. The broadening of phonon energies
makes a direct one-phonon process possible even if there are no free phonons with frequencies
at the transition energy.

We will make two basic assumptions concerning the nanoparticles.
First, since the exact shape and structure of the nanoparticles in question are not known,

and our aim is a general consideration of possible relaxation mechanisms rather than a precise
fitting of experimental results, we adopt a simplified model for the nanoparticle DOS. Namely,
we assume that the DOS ρ(ω) is Debye-like for ωmin < ω < ωD (ωD is the bulk Debye
frequency) and zero below ωmin:

ρ(ω) =
N∑
n=1

δ(ω − ωn) =




3Nω2

(ω3
D − ω3

min)
if ωmin < ω < ωD

0 otherwise

(1)
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where the ωn are phonon eigenfrequencies and N is the total number of vibrational modes†.
Second, we consider nanoparticles to be isolated. By doing this, we exclude from

consideration the extrinsic relaxation mechanisms mentioned above. Violation of this condition
will clearly lead to changes in the model DOS (1).

The paper is organized as follows. In section 2 we derive perturbatively the one-phonon
relaxation rate from the linear strain electron–phonon interaction for a solid with a general
phonon DOS. In the case of free (undamped) phonons, this expression yields a zero transition
rate for frequencies in the acoustic gap. However, if phonon damping is included, the rate
becomes non-zero. In sections 3 and 4 we calculate the electron relaxation rate in the case of
damped phonons. In section 3 the phonon spectral functions are considered to be Lorentzians,
the width of each Lorentzian being the relaxation rate of the corresponding phonon. It is shown
that this naive treatment leads to blatant contradictions with experiment. In section 4 we explain
this contradiction by showing that it is necessary to take into account the frequency dependence
of the phonon self-energy. In section 5 we derive the frequency-dependent self-energy for the
case where the phonon relaxation results from cubic lattice anharmonicity. Section 6 contains
a summary of our results.

2. Linear electron–phonon interaction

We consider a model of a two-level system described by Fermi creation and annihilation
operators c†

α, cα (α = 0, 1) coupled linearly to (scalar) phonons with Bose creation and
annihilation operators a†

n and an, corresponding to the nth mode with frequency ωn. The
Hamiltonian of this system is (in a system of units where h̄ = 1)‡

H = H0 + δH (2)

H0 =
∑
α

(εα − µ)c†
αcα +

∑
n

ωna
†
nan (3)

δH =
∑
n

gn(anc0c
†
1 + a†

nc1c
†
0). (4)

Here H0 is the unperturbed Hamiltonian of a two-level system with energy levels ε0 and
ε1, and that of the free-phonon system; µ is the chemical potential. δH is the electron–
phonon interaction term with the gns being the (real) coefficients in the expansion of the
displacement field in terms of an and a†

n, multiplied by a factor that characterizes the strength
of the electron–phonon interaction. These constants are chosen to have the dimensionality of
energy, and depend on ωn and the total number of eigenmodes N (or the sample volume V )
as gn ∝ √

ωn/N ∝ √
ωn/V . The functional dependence of the gns on ωn and N follows

from the general properties of the expansion of the quantized phonon displacement field and
is independent of the electron–phonon interaction [13]. The Hamiltonian (2) is standard in
condensed matter theory [13] and quantum optics [14]. δH is referred to as the linear strain
interaction because it is linear in the phonon field. It can be also interpreted as an electron–
photon interaction Hamiltonian in the dipole approximation.

The standard approach used to determine the transition rate is based on a calculation of
the retarded Green’s function for the electron in the state α = 1, defined as

Gret(t) = −i�(t)〈{c1(t), c
†
1(0)}〉 (5)

† Note that we do not consider the optical branch of vibrational modes. The latter can be described by a delta-
function-type DOS centred near ωD, and can be easily accounted for in all calculations, without influencing the results
qualitatively.
‡ The electrons are taken to be spinless for simplicity.
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where 〈A〉 ≡ Tr(e−βHA)/Tr(e−βH), �(t) is the step function, and the operators are in the
Heisenberg representation. The Fourier transform of (5) is given by

Gret(ω) ≡
∫ ∞

−∞
Gret(t)e

iωt dt = 1

ω − ξ1 −�ret(ω)
(6)

where ξα ≡ εα −µ and �ret(ω) is the retarded self-energy for the state α = 1. The relaxation
rate (in the conventional quasiparticle-pole approximation) is calculated by evaluating the
imaginary part of the self-energy at the frequency corresponding to the pole of the unperturbed
Green’s function,

τ−1
1 = −2 Im�ret(ω = ξ1). (7)

The self-energy can be evaluated using conventional imaginary-time perturbation
theory [13]. In the leading (second) order, the self-energy diagram is

After analytic continuation, this self-energy may be written in terms of the non-interacting
retarded phonon propagator†:

D
(0)
ret (n, t) ≡ −i�(t)〈[an(t), a†

n(0)]〉0 = −i�(t)e−iωnt (8)

D
(0)
ret (n, ω) ≡

∫ ∞

−∞
D
(0)
ret (n, t)e

iωt dt = 1

ω − ωn + i0
(9)

where 〈A〉0 ≡ Tr(e−βH0A)/Tr(e−βH0) and O is an infinitesimally small positive number
introduced for regularization of the Fourier transformation. One can easily obtain for the
electron self-energy

�ret(ω) =
∑
n

g2
n [nB(ωn) + nF(−ξ0)]D

(0)
ret (n, ω − ξ0) (10)

where nB(z) = 1/[exp(z/T ) − 1] and nF(z) = 1/[exp(z/T ) + 1] are the Bose and Fermi
distribution functions, respectively, and T is the temperature (in units such that Boltzmann’s
constant is one). In order to consider electronic relaxation in the situation where the final
state is not occupied in thermal equilibrium (i.e., it is available for the transition), we set the
chemical potential µ so that nF(ξ0) = 0.

Next, we introduce a coupling-constant-weighted DOS

#(ω) ≡
∑
n

g2
nδ(ω − ωn). (11)

It is evident from equations (9) and (10) that it is the weighted DOS rather than the thermo-
dynamic DOS (1) that governs the frequency dependence of �ret. The frequency dependence
of#(ω) for our nanoparticle model follows from (1) and the fact that gn ∝ √

ωn/N . Evidently,
#(ω) is equal to zero in the gap and proportional to ω3 for ωmin < ω < ωD:

#(ω) =
{

4κω2
Dω

3/(ω4
D − ω4

min) if ωmin < ω < ωD

0 otherwise
(12)

where

κ ≡
(∑

n

g2
n

)/
ω2

D. (13)

† This definition differs from the definition adopted in most standard texts (e.g., see [13]), where phonon propagators
have no time direction.
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The dimensionless parameter κ characterizes the electron–phonon interaction strength. It does
not depend on the total number of modes or the sample volume, as long asωmin 
 ωD, because
g2
n ∝ 1/N and the total number of terms in the summation (13) is N .

Substituting unity for nF(−ξ0), and using definitions (9) and (11), we obtain

�ret(ω) =
∫
#(ω′)

nB(ω
′) + 1

ω − ξ0 − ω′ + i0
dω′. (14)

Using

Im

[
1

ω − ξ0 − ω′ + i0

]
= −πδ(ω − ξ0 − ω′) (15)

we arrive at

Im�ret(ω) = −π#(ω − ξ0)[nB(ω − ξ0) + 1]. (16)

As discussed above, in the quasiparticle-pole approximation the self-energy is evaluated at
ω = ξ1, which yields the relaxation rate

τ−1
1 = 2π#(&ε)[nB(&ε) + 1] (17)

where we have introduced the electronic energy level spacing

&ε ≡ ε1 − ε0. (18)

The brief discussion outlined above summarizes the standard approach to electronic
relaxation of a two-level system coupled to phonons. Formula (17) is the Fermi golden rule
result for the rate of transitions between two electronic levels. It is given by a sum of two terms:
the first one, proportional to nB(&ε), is the stimulated transition rate which is proportional
to the number of thermal phonons with energies &ε. The second term describes spontaneous
relaxation and can occur at zero temperature.

It is clear that the transition rate, according to (17), is always zero when &ε < ωmin. In
the following sections we consider the damping of phonons, which leads to replacement of
the delta functions in (15) by functions which have tails extending into the gap, as a possible
explanation of the experimentally observed relaxation.

3. Lorentzian broadening of phonons

As a first attempt at explaining the observed transition rate for &ε < ωmin, we consider the
damping of phonons. Physically, this means that there is an uncertainty in the phonon energy
ωn. The reciprocal of this uncertainty is the phonon relaxation time which is experimentally
measurable. The relaxation of phonons can occur due to a variety of physical reasons, such as
absorption by the environment at the boundary of a nanoparticle, anharmonicity, and inelastic
scattering by impurities and lattice defects.

We start by observing that in the case of phonon damping, the free-phonon propagators
D
(0)
ret (n, ω) appearing in (10) should be replaced by the (diagonal-in-n) interacting propagators
Dret(n, ω), defined analogously to (8) and (9), but with H0 replaced by the full interacting
Hamiltonian, including the terms that are responsible for phonon damping. This follows
directly from the perturbation expansion where the electron–phonon interaction is treated to
second order, but other interactions (such as the phonon–phonon interaction) are treated to all
orders. The excited-state electron self-energy becomes

�ret(ω) =
∑
n

g2
n[1 + ñB(ωn)]Dret(n, ω − ξ0). (19)
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The tilde sign over nB is used to indicate that the occupation numbers have to be evaluated
at renormalized frequencies, as discussed below. In the simplest case, we can introduce the
phonon damping by replacing the infinitesimal imaginary term in (9) by a finite constant η:

Dret(n, ω) = 1

ω − ωn + iη
. (20)

In reality, η depends on the quantum number n. However, to demonstrate the shortcomings of
the Lorentzian line-shape assumption it is sufficient to take η to be n-independent; we shall
show below that including the correct n-dependence (for the case of anharmonic broadening)
makes the agreement with experiment even worse.

Initially we will assume that η is independent of frequency. In this approximation, the
phonon relaxation time is given by η−1. This leads to

τ−1
1 =

∫
#(ω)

η[1 + Re nB(ω − iη)] − (&ε − ω) Im nB(ω − iη)

(&ε − ω)2 + η2
dω. (21)

Now the relaxation rate is finite when &ε < ωmin due to the tails of the Lorentzian factors in
the integrand of (21).

First, we consider the low-temperature case, when T 
 ωmin. The Bose occupation
factors in (21) can then be neglected. We use expression (12) for #(ω) to obtain

τ−1
1 (&ε) = 4κω2

Dη

ω4
D − ω4

min

∫ ωD

ωmin

ω3 dω

(ω −&ε)2 + η2
. (22)

This integral can be easily evaluated and yields

τ−1
1 (&ε) = 4κω2

Dη

ω4
D − ω4

min

[(
&ε3

η
− 3&ε η

)(
arctan

ωD −&ε
η

+ arctan
&ε − ωmin

η

)

+

(
3&ε2

2
− η2

2

)
ln
(ωD −&ε)2 + η2

(ωmin −&ε)2 + η2
+
ω2

D − ω2
min

2
+ 2&ε(ωD − ωmin)

]
.

(23)

An important feature of the above formula is that the transition rate in the gap is dominated
by the input of high-frequency modes and is insensitive to the local structure of #(ω) near
ω = ωm. Including the n-dependence of η would only enhance this effect. This feature can
be easily seen by evaluating the integral (22) with &ε = η = 0, in which case it becomes
proportional to ω2

D − ω2
min ≈ ω2

D. It can be also verified by observing that

lim
η→0

(
arctan

ωD −&ε
η

+ arctan
&ε − ωmin

η

)

=


π if &ε > ωmin

η(ωD − ωmin)

(ωmin −&ε)(ωD −&ε) if &ε < ωmin.
(24)

Therefore, the dominant term in the square brackets in (23) becomes ω2
D/2 when &ε < ωmin

and η 
 |ωD − &ε|, |ωmin − &ε|. For a small η and ωD � ωmin, the transition rate can be
approximately written as

τ−1
1 ≈ 4κ

ω2
D

(
π(&ε)3�(&ε − ωmin) +

ηω2
D

2

)
. (25)

The first term in the above formula is proportional to #(&ε) and, therefore, is equivalent to
expression (17) obtained in the limit η → 0 by replacing Lorentzians in the integrand of (22)
by delta functions. The second term is due to the finite value of η and becomes dominant when
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&ε �(&ε − ωmin) < εc, where εc ≡ (ηω2
D/2π)

1/3. In particular, for the Debye DOS without
a gap (i.e., with ωmin = 0), the cubic dependence of τ−1

1 on &ε crosses over to the constant
value τ−1

1 = 2κη at energies smaller than εc.
The behaviour of τ−1

1 (&ε, η) is illustrated in figure 1. In figure 1(a), we plot the
dependence of τ−1

1 on &ε for a constant value of η = 0.1 cm−1. Two curves are shown:
one for a DOS with a gap at ωmin = 10 cm−1 and the other for the Debye DOS without a gap.
The two curves are virtually indistinguishable. This is explained by the fact mentioned above
that the dominant contribution at small &ε is due to tails of the high-frequency modes. The

(a)

(b)

Figure 1. (a) Transition rate τ−1
1 as a function of&ε for the DOS with a gap atωmin = 10 cm−1 and

without a gap (ωmin = 0) compared to the result given by formula (17) at zero temperature. Here
ωD = 500 cm−1 and η = 0.1 cm−1. The crossover value εc is indicated by a vertical arrow. (b) The
ratio of the transition rate in a bulk material to that in a nanoparticle with a gap at ωmin = 10 cm−1

for &ε = 3 cm−1. The experimentally measured ratio of 300 [11, 12] is indicated by a horizontal
line. The curves for other values of ωmin such that ωmin > 3 cm−1 are virtually indistinguishable
from the curve shown in the figure.
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crossover from cubic dependence on &ε to a constant is seen for the Debye DOS at &ε < εc.
This clearly contradicts experiment (e.g., see [16]).

In figure 1(b), we plot the ratio of the transition rate in a bulk material (ωmin = 0) to
that of a nanoparticle with a gap at ωmin = 10 cm−1 for &ε = 3 cm−1. These numerical
values approximately correspond to the experimental situation [11, 12]. As can be seen from
figure 1(b), the experimentally observable ratio of ∼300 is achieved for η ≈ 10−5 cm−1. This
is an extremely small value and is inconsistent with experimental results. Note that the curves
for other values of ωmin in the range 5 cm−1 < ωmin < 15 cm−1 are virtually indistinguishable
from the one shown in figure 1(b).

Although we see that the model of damped phonons with a constant width η leads to
serious contradictions, it does describe accurately one of the experimentally observed effects,
namely, the absence of temperature dependence of the transition rate in the temperature range of
1.5–10 K. This is explained by the fact that the high-frequency modes that give the dominant
input to the transition rate in the gap start to be thermally populated only for temperatures
comparable to the Debye frequency, which is much higher than 10 K. The temperature
dependence that follows from equation (21) is discussed below.

To simplify formulae, we will look at the temperature dependence of the transition rate
in the gap at &ε 
 εc. The above discussion suggests that there must be such a temperature
dependence in order to explain the 300-times decrease of the transition rate in the gap compared
to that in bulk at zero temperature. The zero-temperature (spontaneous) value of τ−1

1 in this
case is τ−1

1,spont = 2κη. Next, we assume that η 
 T and expand nB(ωn − iη) to leading order
in η/T :

nB(ωn − iη) ≈ nB(ωn) + i
η

T
nB(ωn)[nB(ωn) + 1]. (26)

We substitute the above expansion into (21) and calculate the integral assuming that η,&ε 
 ω

in the denominator of the integrand, in accordance with the approximation formulated above
(this is a very accurate approximation for &ε < ωmin and η ∼ 10−5). Then the transition rate
is given by

τ−1
1 = τ−1

1,spont

[
1 + 2

(
T

ωD

)2(∫ ωDT

ωminT

x dx

exp(x)− 1
+

∫ ωDT

ωminT

exp(x)x2 dx

(exp(x)− 1)2

)]
(27)

where τ−1
1,spont = 2κη is the zero-temperature value of the transition rate. The integrals on the

right-hand side of (27) have the limiting values of π2/6 and π2/3 when T 
 ωD, respectively,
andωD/T when T � ωD. Therefore, the temperature dependence of τ−1

1 in these two limiting
cases has the form

τ−1
1 (T ) = τ−1

1,spont ×
{

1 + π2(T /ωD)
2 if T 
 ωD

1 + 4T/ωD if T � ωD.
(28)

Thus, the induced transition rate is much less than the spontaneous one for T 
 ωD and,
therefore, the temperature dependence of τ−1

1 is not expected to be observable for these
temperatures.

4. Broadening of phonons with non-Lorentzian line shapes

In the previous section we saw that the introduction of the damping constant η in the phonon
propagator leads to certain unphysical conclusions. This is explained by the fact that the
Lorentzian tails decay as 1/ω2 while the weighted DOS grows as ω3, so an integral of the
type (21) does not converge at the upper limit. As is well known [17], this would lead to an



One-phonon relaxation of localized electronic states 7577

ultraviolet divergence of the transition rate in the case of electromagnetic interaction, when
there is no high-frequency cut-off. In the case of phonons, however, the integral stays finite,
but the relaxation rate is largely determined by the high-frequency modes.

On the other hand, the absence of temperature dependence for T 
 ωD suggests that
the transition rate in the gap might indeed be caused by interaction with the high-frequency
modes whose occupation numbers stay very small for T 
 ωD. This makes the relaxation
mechanism suggested in the previous section plausible. In this section we suggest how the
apparent contradictions discussed above can be removed and the finite transition rate in the
gap explained.

First, we note that the energy-independent value of η ensures that phonons decay
exponentially over time. The lifetime of a phonon is η−1. However, the exponential time
decay can happen even if η is a function of ω, unless we are looking at extremely large times.
In fact, this assumption lies at the core of the widely used quasiparticle-pole approximation.
Consider the following expression for the (diagonal-in-n) phonon propagator:

Dret(n, ω) = 1

ω − ωn −*ret(n, ω)
. (29)

The function (29) differs from the free propagator (9) by the inclusion of the phonon self-
energy*ret(n, ω) in the denominator. If one is interested in the phonon relaxation rate, it can
be calculated by making the quasiparticle-pole approximation at the phonon’s eigenfrequency:
η = −Im*ret(n, ω = ωn). The constant η, defined in this way, is experimentally measurable
by studying, for example, the energy relaxation of the excited phonons.

However, if we are interested in the electron relaxation rate, the quasiparticle-pole
approximation is quite different. By replacing the free propagators in formula (19) by the
exact functions Dret(n, ω), we obtain for the electron relaxation rate

τ−1
1 = −Im

∑
n

g2
n

1 + nB(ωn)

ω − ξ0 − ωn −*ret(n, ω − ξ0)

∣∣∣∣
ω=ξ1

= − Im
∑
n

g2
n

1 + nB(ωn)

&ε − ωn −*ret(n,&ε)
. (30)

As indicated above, we now need to evaluate the phonon self-energy at &ε rather than at ωn.
The results can be quite different from the value of η which is experimentally measured by
observing the relaxation of the phonons.

To summarize the arguments outlined above, it is important to retain the frequency
dependence of the phonon self-energy *ret(n, ω) because it must be evaluated at a frequency
which is significantly different from ωn. The result can be, in fact, much smaller than the
experimentally observable relaxation constant η = −Im*ret(n, ωn).

In this section we will assume that the phonon self-energy depends on ω and on the
quantum number ωn as

Im*ret(n, ω) = −η
(
ω

ωn

)p(
ωn

ωD

)q
. (31)

Below we shall show that the form (31) with p = 7 and q = 8 applies to phonons broadened
by cubic anharmonicity, but for generality we will let p and q be arbitrary at this point. The
experimentally measurable phonon relaxation rates for eigenfrequencies close to ωD are still
given by the constant η. However, if we evaluate the right-hand side of the above formula at
ω = &ε, the results will be ∼η(&ε/ωn)p. If p > 0 and &ε 
 ωn, the factor (&ε/ωn)p can
become much smaller than unity. Practically, this means that in the case of the Debye DOS
without a gap the crossover from the cubic dependence on &ε to a constant at small energies
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can be eliminated, and the experimentally observable ratio of the transition rate in the bulk
samples and in nanoparticles at &ε = 3 cm−1 can be explained by a realistic value of η.

Formula (31) reflects the dependence of*ret(n, ω) both on ω and n. In the particular case
p = q, the net result of (31) is to replace η by η(&ε/ωD)

p in the expressions (22)–(25) for the
transition rate (at zero temperature). Making this substitution in equation (25), we can easily
see that in the case of the Debye DOS without a gap, the crossover from the cubic dependence
on &ε to a constant does not take place as long as η 
 2ωD(ωD/&ε)

p−3. This inequality
always holds if p � 3 and η 
 ωD. The last statement is experimentally known to be true.

It is easy to generalize for arbitrary p �= q. For simplicity, we show the result for
T 
 ωmin when the Bose occupation numbers nB(ωn) are all small compared to unity and can
be neglected. We also assume that ωmin 
 ωD and obtain

τ−1
1 = 4κη

(
&ε

ωD

)p ∫ 1

0

x3+q−p dx

(&ε/ωD − x)2 + (η/ωD)2(&ε/ωD)2px2(p−q) . (32)

(In the lower integration limit, we have replacedωmin/ωD by 0.) For&ε in the gap and positive
p, we have &ε/ωD, (η/ωD)

2(&ε/ωD)
2p 
 1, and the above integral can be approximated as

τ−1
1 = 4κη

(
&ε

ωD

)p ∫ 1

0
x1+q−p dx. (33)

In accordance with the observed absence of the temperature dependence of the transition
rate, we require that the latter be determined mainly by the inputs of high-frequency modes.
Mathematically, this means that the above integral must converge at the lower limit, or
2 + q − p > 0. Then

τ−1
1 = 4κη

2 + q − p
(
&ε

ωD

)p
. (34)

Analogously to the case p = q, we search for the condition when there is no crossover
from cubic dependence of &ε to a constant at small energies in the case of a Debye DOS
without a gap. This condition is that the input of high-frequency modes given by (34) is much
smaller than the first term on the right-hand side of (25), 4πκ(&ε)3/ω2

D. This translates to
η 
 (2 + q − p)ωD(ωD/&ε)

p−3. Again, this inequality holds for p � 3.
So far, we have formulated two requirements for constants p and q: p � 3 and q > p−2.

The first inequality guarantees that the dependence of the transition rate on the energy level
separation is cubic for bulk samples, in accordance with experimental data. The second
condition guarantees that the transition rate for the energy level separation below the gap in a
nanoparticle is governed by the tails of high-frequency modes and is, therefore, insensitive to
temperature as long as the latter is much less than the Debye temperature. In the next section
we calculate Im*ret(n, ω) for the case of phonon interaction due to cubic anharmonicity and
show that it has the same form as (31) with p and q satisfying the above conditions in the
case of the Debye DOS without a gap. Unfortunately, the cubic anharmonicity alone cannot
quantitatively explain the experimentally observed electron decay rates.

5. Relaxation of phonons due to cubic anharmonicity

Cubic anharmonicity of the lattice can be described by the interaction Hamiltonian [13]

δHph = K.3 (35)

where

. ≡
∑
n

gn(an + a†
n) (36)
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is the (scalar) strain field. For simplicity we will ignore the actual tensor structure of the
phonons and their anharmonic interaction, as these do not affect the results qualitatively. We
calculate the phonon Green’s function using the perturbation theory. In the leading (second)
order there are two distinct diagrams (taking into account the time direction of the phonon
propagators) to be evaluated:

where the multiplicity of each diagram has also been indicated. Diagram (a) describes
the second-harmonic generation and can occur at zero temperature. Diagram (b) describes
combination scattering which requires the existence of a thermal phonon (ωm).

The contributions of the diagrams (a) and (b) to the phonon self-energy are

−Im*(a)ret (n, ω) = 9πK2g2
n

∫
#(ω − ω′)#(ω′)[1 + nB(ω

′) + nB(ω − ω′)] dω′ (37)

−Im*(b)ret (n, ω) = 9πK2g2
n

∫
#(ω′ − ω)#(ω′)[nB(ω

′ − ω)− nB(ω
′)] dω′. (38)

We start by analysing the above results at zero temperature. In this case, the only non-zero
term comes from the second-harmonic generation (37):

−Im*ret(n, ω) = 9πK2g2
n

∫
#(ω − ω′)#(ω′) dω′ (T = 0). (39)

In the case of a Debye DOS without a gap, the above integral is equal to

−Im*ret(n, ω) = 9πK2

140

(
4κ

ω2
D

)2

g2
nω

7 (T = 0, ωmin = 0). (40)

We see that the phonon self-energy has the functional form (31) with p = 7 and q = 8. Both
constants satisfy the inequalities formulated in the previous section. Therefore, the broadening
of phonons due to cubic anharmonicity does not lead to unphysical results in the case of the
bulk DOS. Note that the ∝ω7 dependence was obtained because the interaction considered
in this section does not conserve momentum. If we require momentum conservation (e.g., in
bulk samples), the result will be similar with p = 5, q = 6, also satisfying the inequalities
formulated above.

In the case of ωmin > 0, equation (39) does not lead to the functional form (31). In
particular, it is easy to see that Im*ret(n, ω) = 0 if ω < ωmin. Cubic anharmonicity alone is
not sufficient to explain the electronic transitions in the gap at zero temperature. Physically,
this fact can be easily understood. Since the Hamiltonian (35) does not involve interaction
with the outside environment, the broadened DOS is non-zero only for frequencies that can
be constructed as combinations of the type ω = ωn +ωn′ (combination frequencies) where ωn
and ωn′ are two frequencies of the free vibrational modes. Since there are no eigenfrequencies
below the acoustic gap, there are no combination frequencies there either.

Now we turn to the finite-temperature term that follows from diagram (b). To relate
the anharmonic coupling constant K to experimentally measurable quantities, we introduce
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the zero-temperature phonon decay rate for vibrational modes close to the Debye frequency,
ηD. For temperatures much smaller than the Debye one, this rate comes predominantly from
second-harmonic generation (diagram (a)) and, therefore, ηD = −Im*(a)ret (N, ωN), where N
(the total number of vibrational modes) labels the mode with the highest available frequency
(ωD). According to (40),

ηD = 9πK2

140

(
4κ

ω2
D

)2

g2
Nω

7
D. (41)

Taking into account that g2
n = g2

Nωn/ωD, we can rewrite (38) as

−Im*(b)ret (n, ω) = ηD
ωn

ωD
I

(
&ε

ωD
,
T

ωD
,
ωmin

ωD

)
(42)

where

I (x, y, z) ≡ 140
∫ 1

z

ξ 3(ξ − x)3
[

1

exp({ξ − x}/y)− 1
− 1

exp(ξ/y)− 1

]
dξ. (43)

The behaviour of the integral I as a function of relative temperature T/ωD for several sets of
parameters is illustrated in figure 2.

Figure 2. Integral I (&ε/ωD, T /ωD, ωmin/ωD) as a function of T/ωD for ωD = 500 cm−1,
&ε = 3 cm−1, and for different values of ωmin.

As follows from (30), the electron transition rate is given by

τ−1
1 =

∫ ωD

ωmin

#(ω′)
[
1 + nB(ω

′)
] −Im*(b)ret (ω

′,&ε)

(&ε − ω′)2 + [Im*(b)ret (ω
′,&ε)]2

dω′ (44)

where we have substituted for the formal argument of the phonon self-energy functional
dependence onnwith the corresponding frequencyωn; integration in (44) is over this argument.

Since we are interested in the electronic transition rate in the gap at small temperatures,
we make the following approximations, which are essentially analogous to the ones outlined
in the previous section. We neglect the factor *(b) in the denominator of (44), assume that
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(&ε − ω′)2 ≈ (ω′)2, neglect the Bose occupation factor nB, and extend integration from 0 to
ωD, which results in

τ−1
1 = 4κ

3
I

(
&ε

ωD
,
T

ωD
,
ωmin

ωD

)
ηD. (45)

Taking into account that the transition rate at the same energy in the bulk is given by
4πκ&ε3/ω2

D, we can estimate the ratio of the transition rates in nanoparticles with the acoustic
gap to that in large samples as

τ−1
1 [gap]

τ−1
1 [bulk]

= I (&ε/ωD, T /ωD, ωmin/ωD)

3π

ηDω
2
D

&ε3
. (46)

The integral I is plotted in figure 2 as a function of T/ωD for&ε = 3 cm−1, ωD = 500 cm−1,
and several values of ωmin. As can be seen from the figure, I is described by a power-
law function of T/ωD for large temperatures and is exponentially small for T 
 ωD. The
characteristic value of T/ωD for which the crossover from the power to exponential behaviour
takes place decreases asωmin approaches&ε. The numerical values of the integral are extremely
small for realistic values of the parameters and temperatures of the order ofωmin. For example,
for &ε = T = 4 cm−1 and ωmin = 4 cm−1, I ≈ 2.9 × 10−11. By using (46) with the known
ratio τ−1

1 [gap]/τ−1
1 [bulk] ≈ 1/300 and the above value of I , we arrive at the conclusion

that ηD must be as large as ≈1.2 × 107 cm−1 in order to be consistent with experimental
results.

6. Summary and discussion

We have calculated the frequency and temperature dependence of the one-phonon relaxation
rate for an electronic transition below the acoustic gap in nanocrystals that is made possible due
to anharmonic broadening of phonon modes. Although the cubic anharmonicity provides a
finite-temperature mechanism for the direct one-phonon process, it is insufficient for explaining
experimental rates that were observed at low temperatures. The physical reason for this is
that anharmonicity alone does not provide any mechanism for energy dissipation from the
nanoparticle. Such dissipation is required by energy conservation, because the energy of
the initial and final states must be the same, but the electronic energy cannot be absorbed
by phonons at zero temperature because all the phonon modes are above the acoustic gap.
At finite temperature, the electronic transition energy can be accommodated by absorbing a
thermal phonon and then emitting a phonon of higher frequency. This process leads to a state
with the same energy as the initial one.

We conclude that in order to describe electronic transitions in the acoustic gap at low
temperatures, the interaction Hamiltonian should contain terms that allow energy exchange
with the surroundings. Accordingly, no such transitions should be possible in truly isolated
nanoparticles. The latter prediction can be verified experimentally by comparing the transition
rates in systems of aggregated and non-aggregated nanocrystals.
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